韩国三级片全集-韩国三级片大全-韩国三级片在线播放-三级电影大全-电影天堂

                  植物營養研究NMT解決方案

                  植物營養研究NMT解決方案

                  ?

                  一、視頻資源

                  二、參考文獻

                  C2019-031,張亞麗,南京農業大學農業部作物遺傳與種質創新國家重點實驗室,PLANT PHYSIOL,NO3-
                  A Transcription Factor, OsMADS57, Regulates Long-distance Nitrate Transport and Root Elongation

                  C2019-004,陳少良,北京林業大學,New Phytol,楊樹,根(距離根尖300-400μm),NO3-

                  Amelioration of nitrate uptake under salt stress by ectomycorrhiza with and without a Hartig net

                  C2018-020,張振華,湖南農業大學,Plant Physiol,擬南芥,NH4+、NO3-

                  NRT1.1-related NH4+ toxicity is associated with balance between NH4+ uptake and assimilation

                  C2019-032,張振華,湖南農業大學,plant sci,Cd2+、NO3-

                  Balance between nitrogen use efficiency and cadmium tolerance in Brassica napus and Arabidopsis thaliana

                  C2019-029,李衍素、于賢昌,中國農業科學院蔬菜與花卉研究所,BMC Plant Biol,根毛區NO3-、NH4+

                  24-Epibrassinolide promotes NO3- andNH4+ ion flux rate and NRT1 gene expression in cucumber under suboptimal root zone temperature

                  C2018-045,楊興洪,山東農業大學,Front Plant Sci,番茄,根部伸長區,H+

                  Genetic Engineering of the Biosynthesis of Glycine Betaine Modulates Phosphate Homeostasis by Regulating Phosphate Acquisition in Tomato

                  C2018-040,施衛明、李光杰,中科院南京土壤所,Tree Physiol,紅柳、棉花,根部(距離根尖5mm,20mm),NO3-

                  Characterization and comparison of nitrate fluxes in Tamarix ramosissima and cotton roots under simulated drought conditions

                  C2018-029,張佳寶,中國科學院土壤研究所土壤與可持續農業國家重點實驗室,Front Plant Sci ,小麥,K+、O2

                  Potential Root Foraging Strategy of Wheat (Triticum aestivum L.) for Potassium Heterogeneity

                  C2017-032,王毅,中國農業大學,Plant Cell,爪蟾卵母細胞,K+/H+

                  NRT1.5/NPF7.3 Functions as a Proton-Coupled H+/K+ Antiporter for K+ Loading into the Xylem in Arabidopsis

                  C2017-010,許衛鋒/張建華,福建農林大學/香港中文大學,J EXP BOT,根,H+

                  Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress

                  C2016-004,張振華,湖南農業大學,Plant Physiology,液泡,NO3-

                  Nitrogen Use Efficiency Is Mediated by Vacuolar Nitrate Sequestration Capacity in Roots of Brassica napus

                  C2015-036,童依平,中科院遺傳發育所,Plant Physiology,根,NO3-

                  The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield

                  C2015-007,童依平,中科院遺傳與發育生物學研究所,Plant Physiology,根,NO3-

                  A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input

                  C2014-022,余玲,南京農業大學,Plant Physiology,根,K+

                  The Role of a Potassium Transporter OsHAK5 in Potassium Acquisition and Transport from Roots to Shoots in Rice at Low Potassium Supply Levels

                  C2013-020,羅志斌,西北農林科技大學,J EXP BOT,根,NH4+/NO3-/H+

                  Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability

                  C2013-008,夏新莉/尹偉倫,北京林業大學,PLANT CELL ENVIRON ,根,NO3-

                  The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis

                  C2012-021,徐國華,南京農業大學,Plant Physiology,根,NO3-

                  Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx

                  C2012-006,施衛明/張建華,中科院南京土壤研究所,PLANT CELL ENVIRON ,根,H+

                  TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress

                  C2010-006,施衛明,中科院南京土壤研究所,PLANT CELL ENVIRON ,根,NH4+

                  Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity

                  三、常測哪些指標

                  NO3-、NH4+、K+、Ca2+、H+

                  四、檢測這些離子流、分子流,有什么生物學意義

                  • 1)NO3-生理功能概述

                    ?2)科研案例

                    運用15N示蹤及非損傷微測技術,研究了不同供磷水平對平邑甜茶幼苗NO3--N吸收及利用特性的影響,當生長介質磷濃度在3.0~6.0? mmol×L-1時,平邑甜茶對NO3-有吸收作用,并在3.0? mmol/L磷濃度時其吸收速率最高。而在0~2? mmol/L及8.0~16.0? mmol/L磷濃度處理下,平邑甜茶對NO3-有外排作用,結合酶活、生物量等指標的測定,結果得出:磷濃度在3.0~4.0? mmol/L時最有利于平邑甜茶幼苗的生長及氮素的吸收利用。(彭玲,朱占玲,陳倩,季萌萌,陳汝,葛順峰,姜遠茂.供磷水平對平邑甜茶幼苗NO3-吸收、利用特性的影響.中國生態農業學報,2017,25(08):1147-1153.)

                    ?01

                    ?

                  • 1)NH4+生理功能概述

                    ?2)科研案例

                    油菜nrt1.1突變體根部排? NH4+速率顯著高于野生型。在? (NH4)2SO4環境下,NRT1.1? 通過信號調控誘導油菜根中NH4+吸收轉運蛋白的表達來增強對生長環境中NH4+的吸收;nrt1.1根中NH4+吸收轉運蛋白沒有受到(NH4)2SO4的顯著誘導。此次研究成果,揭示了擬南芥? NRT1.1的信號功能調控銨吸收和C-N代謝解偶聯,增強植物對銨脅迫的敏感性。研究結果為深入了解植物銨毒害的發生機制,提高稻田漬害條件下的油菜氮素養分利用效率提供了理論支撐。(Jian? S,? Liao? Q,? Song? H,? et? al.? NRT1.1-Related? NH4+? Toxicity? Is? Associated? with? a? Disturbed? Balance? between? NH4+? Uptake? and? Assimilation.? Plant? Physiol.? 2018;178(4):1473-1488.? doi:10.1104/pp.18.00410)

                    ?02

                  • 1)K?生理功能概述

                    2)科研案例

                    以擬南芥突變體? lks2為研究對象得到對應的轉運蛋白基因? NRT1.5/NPF7.3,將其轉入非洲爪蟾卵母細胞,檢測了活體爪蟾卵母細胞? K+、H+流的變化過程。結果顯示:? lks2/nrt1.5突變體,特別是低鉀條件下,在? K+、NO3-從根部轉運至地上部分的過程中明顯有缺陷,揭示了NRT1.5在? K+從根部轉運到地上部過程中起到的重要作用,同時也參與了? K+/NO3-分布的協調過程。(Li? H,? Yu? M,? Du? XQ,? et? al.? NRT1.5/NPF7.3? Functions? as? a? Proton-Coupled? H+/K+? Antiporter? for? K+? Loading? into? the? Xylem? in? Arabidopsis.? Plant? Cell.? 2017;29(8):2016-2026.? doi:10.1105/tpc.16.00972)

                    03

                  • 1)Ca2?生理功能概述

                    2)科研案例

                    缺鈣脅迫的花生LH11根系上,距根尖200~800? μm和200~1500? μm處,Ca2+離子流主要為外流特征,而YZ9102根系仍保持一個穩定的Ca2+內流。正常供Ca條件下,品種LH11,距根尖1500? μm處Ca2+表現為內流,YZ9102在距根尖200~1500? μm區域表現為Ca2+內流,距根尖200? μm處表現出Ca2+外流。結合形態觀察和亞細胞定位等結果發現,花生品種LH11較YZ9102對缺Ca更為敏感,缺Ca脅迫下,YZ9102保持良好的根系形態和細胞結構,有較強的Ca2+吸收能力,Ca2+由根部向地上部運輸較多,這些可能是花生YZ9102更耐缺Ca的一些重要原因。(高麗麗.? 兩個花生品種苗期鈣素營養特性比較.中國農業科學院,2013.)

                    ?04

                  • 1)H?生理功能概述

                    2)科研案例

                    課題組利用高NUE甘藍型油菜基因型H,低NUE甘藍型油菜基因型L和擬南芥突變型AUX1三種類型樣品,闡釋不同施? N? 量下? NUE? 變化的機制。LN條件下,甘藍型油菜的NUE增加,通過調該研究檢測樣品根尖NO3-和H+吸收速率,發現LN條件下,二者的吸收速率顯著增加,結合光合和基因表達等實驗結果,說明通過改變RSA、相關基因表達、根系質膜? H+-ATPase? 活性和根系活力,? LN脅迫促進了根系對N的吸收能力。這個過程可能受到IAA分布的影響。? 該研究結果為植物適應環境機制研究提供了新的方向。(Wu? Z,? Luo? J,? Han? Y,? Hua? Y,? Guan? C,? Zhang? Z.? Low? Nitrogen? Enhances? Nitrogen? Use? Efficiency? by? Triggering? NO3-? Uptake? and? Its? Long-Distance? Translocation.? J? Agric? Food? Chem.? 2019;67(24):6736-6747.? doi:10.1021/acs.jafc.9b02491)

                    05

                  五、可以檢測哪些樣品

                  點擊查看具體信息

                  點擊查看樣品照片

                  ?

                  1、動物樣品

                  1)細胞

                  神經細胞、腫瘤細胞、巨噬細胞、淋巴細胞等

                  2)組織器官

                  腫瘤、皮膚、胃粘膜、胰島、腦(海馬體等)、胚胎(大鼠、魚)、斑馬魚皮膚/、耳蝸、心臟(香螺)、卵(魚、雞蛋、爪蟾)、骨骼、角膜、脊椎(豚鼠)、肌肉組織(肌纖維、心?。?/p>

                  3)其它動物樣品

                  珊瑚、螨蟲、昆蟲(果蠅幼蟲的腸、蟑螂血腦屏障、按蚊、長紅錐蝽)、蝌蚪、水蛭、藍蟹(微感毛)、變形蟲、水絲蚓

                  2、植物樣品

                  1)營養器官

                  根:、根毛、根瘤*

                  莖:邊材、心材、微管形成層、木質部

                  葉:表皮細胞、葉肉細胞、鹽腺細胞、保衛細胞

                  2)生殖器官

                  花:花瓣、花瓣表皮細胞、花粉

                  種子:整體、胚

                  果實:果殼、果皮、果肉(蘋果、柑橘)、籽粒、棉花纖維、棉桃

                  3)細胞:植物懸浮細胞、液泡

                  4)愈傷組織

                  3、微生物樣品

                  酵母細胞、菌絲、菌落、微藻、細菌(大腸桿菌)

                  4、其它生物樣品

                  周叢生物

                  5、非生物樣品

                  金屬、混凝土、泥沙、納米材料、生物醫藥材料

                  六、樣品需要做哪些前處理

                  非損傷微測技術最大的特點就是活體、無損檢測,因此動植物材料在檢測前,不需要任何的液氮速凍、染色、研磨處理等。

                  1、動物單細胞

                  因NMT是活體檢測,故從培養箱中拿出來后,置于培養皿中,直接檢測即可

                  2、動物組織

                  因NMT是活體檢測,無需提前處理。如檢測部位天然暴露在外,如斑馬魚皮膚離子細胞、側線毛細胞,直接檢測即可。如檢測部位位于體內,需在檢測時暴露出檢測部位(可采用麻醉的方式),后檢測即可。

                  3、植物根莖葉等組織器官

                  天然暴露在外的組織器官,例如根、莖、葉的表面,無需任何處理,直接檢測即可。水培、土培、砂培、平板培養均可。

                  4、植物原生質體/液泡

                  因NMT是基于微傳感器/探針的非損傷檢測,檢測時不接觸樣品,故原生質體、液泡需要從組織或者細胞中,提取出來后檢測。

                  5、植物葉片的表皮細胞、葉肉細胞、鹽腺細胞、保衛細胞

                  無需提前處理。因這些細胞處于組織內部,故檢測時采用撕取等方式,暴露出相應細胞即可。

                  6、植物花粉管

                  離體萌發:在培養皿中萌發一段時間后即可直接檢測;在體萌發:將柱頭置于培養皿中,待萌發一段時間后即可直接檢測。

                  7、植物果實

                  無需提前處理。如待測部位位于果實內部,需在檢測前暴露出相應部門即可。

                  8、植物懸浮細胞

                  無需提前處理。檢測時,置于培養皿中檢測即可。

                  七、有哪些檢測方式?

                  1、實時處理 /瞬時處理后檢測

                  即瞬時處理,是指在檢測過程中,在正常測試液中瞬間加入所需的干旱脅迫溶液(PEG或甘露醇等溶液)的處理方法,目的是為了觀察瞬間干旱脅迫下,樣品短時間內的離子/分子的變化趨勢,即短時效應。

                  2、預處理/提前處理好后檢測

                  是指在干旱脅迫一段較長的時間后(數十分鐘/數小時/數天),觀察植物離子/分子進出的情況,即長時效應。

                  八、檢測環境是空氣還是溶液

                  檢測時,只要求待測部位浸于溶液中(無需整體都浸在溶液里)。

                  九、樣品是如何檢測的

                  十、可以送樣檢測嗎

                  可以送樣檢測。目前非損傷微測技術測試服務由中關村NMT產業聯盟統籌管理,由遍布全國的22家NMT創新平臺服務中心,提供檢測服務。點擊獲取測試服務

                  ganhanxiepo14

                  十一、哪里能獲取非損傷微測系統操作培訓服務

                  請直接聯系旭月公司獲取設備操作培訓服務。點擊此處查看培訓服務介紹

                  聯系人:巨肖宇

                  電話:010-8262 2628按3

                  十二、如何購買實驗耗材(自行檢測)

                  韩国三级片全集-韩国三级片大全-韩国三级片在线播放-三级电影大全-电影天堂